LANE Facilities

PENNSYIVANIA

Bedford	814.623 .1191
Carlisle	717.249 .8342
King of Prussia	610.272 .4531
Pulaski	724.652 .7747

King of Prussia 610.272.4531 Pulaski \quad 724.652.7747
Shippensburg 717.532.5959
VIRGINIA
Dublin
Wytheville
540.439.320
540.674.4645 276.223.1051

Ballston Spa 518.885 .4385 Bath

NORTH CAROLINA
Statesville $\quad 704.872 .2471$

Temple $\quad 254.727 .3346$
CORPORATE HEADQUARTERS
Camp Hill 717.761.8175

LANE Products
Corrugated Metal Pipe
Spiral Rib Pipe
Corrugated HDPE Pipe
Corrugated Polypropylene Pipe
Structural Plate Pipe and Arches
Structural Plate Box Culverts
Structural Plate Box Culverts
Storm Water Collection Chambers Sorm Water Management Systems Storm Water Filters
FT (HDPE) Water Quality Unit CMP Sandfilter
Open Top Slotted Drain
Welded Wire Mesh Gabion
Structural Plate Headwall-Culvert Systems Custom Fabrications (Pond Kits, Trash Racks, etc.) Uustom Fabrications (Pond Kis, Trash Rebar and Custom Powder Coating

NGPA

P Plastics
PIPE
NSTITUTE
plasticpipe.org

CMP TECHNICAL GUIDE

A guide to using corrugated metal pipe

LANE

CMP TECHNICAL GUIDE

A GUIDE TO USING CORRUGATED METAL PIPE

Corrugated Steel Pipe (CSP)

Corrugated Aluminum Alloy Pipe (CAAP)

SPECIFICATION GUIDE 2-5
INSTALLATION GUIDE
SERVICE LIFE GUIDE
COVER HEIGHT TABLES
AISI CSP 10
AASHTO CSP
AASHTO CAAP
AISI CSP-ARCH
AASHTO CSP-ARCH AND CAAP-ARCH
PIPE-ARCH DESIGN SUPPLEMENTAL
PIPE-ARCH LAYOUTS
MANNING'S EQUATION VARIABLES
END TREATMENT
HANDLING WEIGHTS
engineer notes

SPECIFICATION GUIDE OVERVIEW

Specifying CMP products invoives some fariiliarity with the industry publications, and this Specitication Guide serves as a locus of these standards. In general, the design engineer will need to
. Select an appropriate CMP material type, manufacturing standard, and joint performance (pages 2-4).
2. Ensure the CMP material meets a structural design standard in relation to burial depths and live loads (page 5)
. Incorporate a corresponding installation standard into the project documents (page 5).
Specifying CMP products first involves an understanding of the application. Typical applications such as road culverts and storm drains will involve size and shape determinations for hydraulic capacity. Other applications may involve perforated CMP for various subsurface drainage purposes. Secondary considerations may be towards CMP material types to meet any durability or service life requirements. Subsequent decisions to economize the product are based on strength demands so that the lightest gauge or meta
thickness is selected.

There are three primary ASTM CMP standards (AASHTO equivalents in parenthesis). One for metallic coated steel pipe, another for polymer coated steel pipe, and a third for aluminum alloy pipe. Each standard uses the same classification system to identify the pipe type, and each standard makes provisions for the different corrugations and metal thicknesses available.

STEP 1, Select Pipe Type. This primarily involves selecting either a round or pipe-arch shape, and secondarily whether a standard corrugation (sinusoidal arc-and-tangent) or smooth interior is needed for the application. Pipe-Arch shapes are for low cover conditions that require more hydraulic capacity than round pipe can deliver at the same invert elevation (figure 7 , page 17). Opting or a round shape when possible will provide greater economy for the project. Round pipes used for underdrains or for underground disposal of water will require the additional step of selecting either a Class1 or Class 2 perforation pattern.

STEP 1. PIPE CLASSIFICATION		Corrugation$11 / 2 \times 1 / 4 \text { in. }$	Description Sinusoidal	$\begin{aligned} & \text { Steel } \\ & \text { 6-10 in. } \end{aligned}$	Aluminum
Type I	Round Pipe, Exterior/Interior Corrugations				
Type IR	Round Pipe, Smooth Interior (Spiral Rib Pipe)	$22 / 3 \times 1 / 2$ in .	Sinusoidal	12-72 in.	12-72 in.
Type II	Type I Pipe Reformed into a Pipe-Arch	3×1 in.	Sinusoidal	48-102 in.	36-120 in.
Type IIR	Type IR Pipe Reformed into a Pipe-Arch	5×1 in.	Sinusoidal	48-144 in.	
Type III	Type I Pipe with Class 1 or Class 2 Perforations	$3 / 4 \times 3 / 4 \times 7 / 2$ in.	Spiral Rib	15-102 in.	15-84 in

Perforated Pipe. Most applications require non-perforated pipe. Where applications for perforated pipe are necessary there are two perforation patterns available, Class 1 and Class 2, and the CMP standards use parallel classification systems for each. Inherent in the classification systems are the size, spacing and placement of the perforations.

Class 1, Partially Perforated Pipe (Subsurface Drainage). Class 1 perforations are for pipe intended to be used for subsurfac drainage, where the pipe maintains an unperforated segment above the invert for a flow channel. Perforations have nominal diameters of 38 -in arranged in rows parallel to the axis of the pipe with one perforation in each row for each corrugation. Rows of perforations are arranged in two equal groups placed symmetrically on each side of the lower unperforated segment corresponding oo the flow line of the pipe.

Table 1. Class 1 Perforation Rows Table 2. Class 1 Perforation Inlet Area

$\begin{aligned} & \text { (in.) } \end{aligned}$	Total Rows	$\underset{(\mathrm{in} .)}{\mathrm{H}_{\text {max }}}$	$\underset{\text { (in.). }}{L_{\text {min. }}}$	Corrugation	Inlet Area
6	4	2.8	3.8	$11 / 2 \times 1 / 4 \mathrm{in}$.	3.53 in ${ }^{2} / \mathrm{fl}(6,8,10 \mathrm{in})$
8	4	3.7	5.1	$22 / 3 \times 1 / 2 \mathrm{in}$.	$2.98 \mathrm{in}^{2} / \mathrm{fl}(12-21 \mathrm{in})$
10	4	4.6	6.4	$22 / 3 \times 1 / 2 \mathrm{in}$.	$3.98 \mathrm{in}^{2} / \mathrm{ft}(224 \mathrm{in})$
12	6	5.5	7.7	3×1 in.	3.53 in $2 / / t$ (all diameters)
15	6	8.9	9.6	5×1 in.	2.12 in2/ft (all diameters)
18	6	8.3	11.5	Inlet areas based on a nominal $3 / 8$-in. diameter perforation.	
21	6	9.7	13.4		
≥ 24	8	0.46D	0.64D		

Class 2, Fully Perforated Pipe (Subsurface Disposal). Class 2 perforations are for pipe intended to be used for subsurface disposal of water. Perforations around the entire periphery of the pipe allows both infiltration and complete exfiltration (i.e. disposa into the ground). The common use of Class 2 perforations is for pipe used in groundwater recharge systems. Class 2 perforations

STEP 2, Select Pipe Material. This step presumes a service life is defined for the project so that the most economical decision can be made and the proper pipe standard specified. See page 9 for a review of anticipated service life along with the references cited there for a more in-depth treatment.

STEP 2. PIPE STANDARD

ASTM A760 (AASHTO M36) Galvanized or Aluminized Steel Pipe ASTM A762 (AASHTO M245) Polymer-Coated Steel Pipe
ASTM B745 (AASHTO M196) Aluminum Alloy Pipe

See page 9 for Service Life Assignments
Galvanized Coil Coating weight 2 oz/sf of coil $\begin{array}{lll}\text { Aluminized Coil } & \text { Coating weight } & 10 z / \text { sf of coil }\end{array}$ Polymer Coil Laminate thickness 10 mil each side

STEP 3, Select Lightest Gauge. Industry guidelines have established empirical flexibility limits that a gauge-span combination should have to be safely handled and installed. While these limits are quantified by a standard computation called the Flexibility
Factor (FF), in the final analysis the limits represent a subjective approach in defining when a structure may not be rigid enough
to withstand compaction forces alongside the pipe When the FF is slightly exceeded the designer should specify a more readily to withstand compaction forces alongside the pipe. When the FF is slightly exceeded the designer should specify a more readily compacted embedment material such as crushed stone. Beyond that, the gauge will generally increase with higher fill heights to meet strength requirements as illustrated on the cover height tables located on pages 10-14.
Explanatory notes provide additional clarification to the various cover height tables and can also be correlated to the structural design standards listed on page 5 . It should be noted that gauge considerations for the pipe-arch shapes are not always governed
by flexibiity limits since some of the corrugation patterns require a heavier gauge to properly form the arch shape, and sharp corner by flexibility limits since some of the corrugation patterns require a heavier gauge to properly form the arch shape, and sharp cor radii provide for an entirely different design consideration (see the Pipe-Arch Design Supplemental, page 15).

STEP 3. PIPE GAUGE

Gauge	Steel	Aluminum	Gauge	Steel	Aluminum
18 GA	$0.052 \mathrm{in}$.		12 GA	$0.109 \mathrm{in}$.	0.105 in.
16 GA	$0.064 \mathrm{in}$.	0.060 in.	10 GA	0.138 in.	0.135 in.
14 GA	$0.079 \mathrm{in}$.	0.075 in.	8 GA	0.168 in.	0.164 in.

See pages 10-14 for Cover Height Tables

STEP 4, Select Joint Performance. Each of the above-mentioned CMP standards also provides corresponding joint performance criteria based upon the ability of the joining system
provides corresponding joint performance
to control leakage or material infiltration.
Soil Tight - (default criteria) resists infiltration of soil particles larger than those passing a No. 200 Sieve Silt Tight - resists infiltration of soil particles equivalent to an apparent opening size (AOS) of 70 Leak Resistant - leakage limited to 200 gal/iin-dia/mile/day at a defined pressure head from $0-25 f$ Special Design - zero leakage for 10 min at a defined pressure head from 10-25ft in a laboratory setting

Pipe joining systems defined in the CMP standards include several wrap-around styles of metal bands (see figure 2 above) of the same material as the pipes being joined, albeit in a lighter gauge. The different types of coupling bands and connecting hardware are	MIN BAND GAUGE MIN BAND WIDTH (CSP)

Pipe	
Be-12	Band
18 GA	
10 GA	16 GA
8 GA	14 GA

\section*{	MIN BAND WIDT
Dia. Band	 $\begin{array}{ll}12-36 \text { in. } & 7 \text { in. } \\ 42-144 & \\ & 101 / 2\end{array}$ $42-144$ in. $101 / 2 \mathrm{in}$.}

For pipe with annular
corrugated ends

MIN BAND WIDTH (CAAP)

Corrugation	Dia.	Annular	Dimple
$22 / 3 \times 1 / 2 \mathrm{in}$.	12-36 in.	7 in .	101/2 in.
	42-72 in.	101/2in.	$101 / 2 \mathrm{in}$.
	78-120 in.	$101 / 2 \mathrm{in}$.	$16^{1 / 4}$ in.
3×1 in.	$30-72 \mathrm{in}$.	12 in .	101/2 in.
	78-120 in.	12 in .	$161 / 4 \mathrm{in}$.

Specifying Joint Performance. In general, all styles of metal bands will provide soil-tight performance but will need additiona materials to meet higher demands. Silt-tight performance will require, at a minimum, a geotextile wrap around the banded joint. The various leak resistant or special design performances will require the addition of a gasket that meets the material requirements of ASTM D1056 (see following page).

For additional information on specifying joint performance see below standard, which provides definitions of joint performance terms, a rational design methodology for appropriate joint performance requirements, and uniform criteria for manufacturers' terms, a a ational des.

AASHTO R82, Standard Practice for Pipe Joint Selection for Highway Culvert and Storm Drains

COUPLING BANDS

Pipe corrugations are helically formed but the CMP standards make provisions for the pipe ends to be reformed into annula around the entire periphery of the pipe end, and to better engag certain coupling bands.

Figure 3. Sleeve Gaskets.

All annular corrugated ends are reformed with a $2^{2 / 3} \times 1 / 2-11$ corrugation by a process commonly known as rerolling.

Corrugated Bands*
Corrugated Bands* Annular corrugated bands are
available in nominal widths of 7,12 and $24-$ in.

Partially Corrugated Bands Flat bands with one annular corrugation along each edge

 of 7 and 12 -in.Flat Bands*
Bands with no corrugations
or projections are available in nominal widths of 7,12 and 24-in.

Dimple Bands
Bands with dimple projections in annular rows. Along with flat band
hey may be used on pipe with helical or annular corrugations. Dimple bands are available
12 through 54 -in CMP.

Sleeve Gaskets
A $3 / 8$-in thick neoprene material that slides over the pipe ends
and underlays the connecting band to enhance the leak
7,12 and 24 -in widths. See figure 3

CONNECTING BAND HARDWARE

Standard Lug Connector
Assembly typically uses the dual lug configuration (left) The multiple lug configuration (right) is for 24 -in wide bands.

Angle Connection*
Assembly uses the two-bolt configuration for 7 -in bands (left), a tree-bolt configuration for 12 -in bands (middle), and a six-bolt configuration for 24-in bands (right)

Bar and Strap Connector*
Assembly typically consists of the single-strap configuration (eft). The multi-strap configuration (right) can be used for 12 -in wide bands when specified.

Rod and Lug ($1 / 2$-in \varnothing SILO ROD \& LUG) Assembly typically consists of the dual rod configuration (left) and may be used on corrugated or partially corrugated bands. The multiple rod configuration (right) is used for 24-in corrugated The multiple

SELECTING THE APPROPRIATE STRUCTURAL STANDARD

CMP Structural Design Standards

Standard methods of structural analysis are generally based on research adopted by AASHTO. Standards with slight variations have also been adopted by ASTM. The railway industry, represented by AREMA, maintains distinct material and design standards to ensure railway live loading (E80) and its effects are appropriately managed
The cover height tables on pages 10 and 13 show results generated by the AISI method, an Allowable Stress Design method for corrugated steel pipe that's fully outlined in the first three general industry references below.

Note that cover height tables were not prepared for railway applications since these tables are included in the AREMA Manual for Railway Engineering publication cited below for both steel and aluminum round and pipe-arch shapes.
The following standards are listed with the qualifying remark that the AASHTO method is the primary design standard outside railway applications:

ASTM A796 Practice for Structurider ASTM B790 Practice for Structural Design of Corrugated Aluminum Pipe, Pipe-Arches, and Arches for Culverts, Storm Sewers, and Other Buried Conduits
ASTM A998 Practice for Structural Design of Reinforcements for Fitings in Factory-Made Corrugated Stel Pipe for Sewers and Other Applications
AREMA 2020 Manual for Railway Engineering, Section 4.13, Design Criteria for Corrugated Metal Pipes
AASHTO LRFD Bridge Design Specifications, Section 3, Loads and Load Factors [9th Edition]
AASHTO LRFD Bridge Design Specifications, Section 12, Buried Structures and Tunnel Liners [9th Edition]
For an important resource visit www.candeforculverts.com. CANDE is a free special purpose, 2D finite element computer program oped for the structural design and analysis of soil bridges buried culvert and underground structures. See especially its Solution Methods and Formulations for a thorough understanding of CMP behavior and modelling consideration

SELECTING THE APPROPRIATE INSTALLATION STANDARD

CMP Installation Standard

Corrugated metal pipe (CMP) is a flexible pipe material that derives structural support from the strength and stiffness of the backfil envelope. The backfill-culvert interaction system defines the ability of CMP to withstand service loads. Installation specifications illustrating backfill envelopes, addressing appropriate backfill material selection, and identifying proper compaction guidelines help ensure acceptable levels of backfill-culvert interaction are realized:
ASTM A798 Practice for Installing Factory-Made Corrugated Steel Pipe for Sewers
ATN B788 Practice for Instaling Factory-Made CorrugaedAlum inum Culverts and Storm Sewer Pipe
AASHTO LRFD Bridge Construction Specifications, Section 26, Metal Culverts
AREMA Manual for Railway Engineering, Section 4.12, Assembly and Installation of Pipe Culvert
See especially the National Corrugated Steel Pipe Association Installation Manual at NCSPA ora For a highly recommended general resource see Pipeline Installation 2.0 by Amster Howard [2nd Edition 2015]

GENERAL INDUSTRY REFERENCES

Corrugated Steel Pipe Design Manual by the National Corrugated Steel Pipe Association (NCSPA) [2nd Edition 2018] Handbook of Steel Drainage \& Highway Construction Products by the American Iron and Steel Institute (AISI) [1994 Edition] Modern Sewer Design by the NCSPA and the AISI [4th Edition, 1999]

2020 AREMA Manual for Railway Engineering, Chapter 1, Part 4 Culverts

GENERAL OVERVIEW

pipe should be unloaded and handled with reasonable care to avoid any undue damage, especially to the coatings. Using two equally spaced lift points for the larger sizes will prevent the pipe ends from striking objects or being dragged along he ground.

Pipe instalation generally progresses in an upstream fashion beginning at the outlet of the drainage improvement to be constructed and should be uniformly supported on grade throughout the alignment.
Joint gaps for circular pipe up to one inch can be expected. A joint gap for circular pipe between one and two inches is not a cause for any undue concern but should be investigate acaus if any corrective actions are necessany, Greater oint gaps may be encountered with the arch shapes in the larger sizes due to the manufacturing process. Specifying a 2-ft wide connecting band with an underlying gasket typically offsets any joint gap issues. Where leakage is not a concern the gasket requirement may be mitigated by the inclusion of a non-woven geotextile wrap around the joint exterior
The foundation of a pipe installation is ideally the undisturbed native material resulting from a carefully graded excavation. Replacing soft or unyielding material with additional bedding will help ensure uniform pipe support. ASTM A798 notes that unsuitable foundation materials are replaced across the width of the trench to a depth of one-half inch per foot of design fill over the pipe with a 24 -inch maximum.
Note: materials used for foundation improvements (and al backfill materials) must have gradations compatible with djace textile avoid migration or be separated with a nonwoven geotextile.

Pipe bedding is constructed in a manner to provide uniform pipe support to the design line and grade, with the middlethird beneath round pipe left loose to cradle the pipe so that the load is better distributed along the bottom segment of the pipe

For pipe-arch shapes, however, a shaped bedding width corresponding to the flat bottom arc will be needed to eliminate the
challenge of filling this area after-the-fact. The shaped bedding width must not exceed this width as select, compacted material is needed beneath he sharp comers
structural support

A minimum bedding thickness of two times the corrugation depth is generally recommended. The bedding material is typically the same material used for pipe embedment, ideall a clean, cohesionless, free-draining soil with particles that move around

Pipe haunching is carried out on both sides simultaneously to avoid roling the pipe. Gently dumping small amounts of material on top of the pipe will provide some stability while material falling beside the pipe can be pushed into the haunch zone. Filling adjacent sidefill zones will provide lateral support to the haunch material during the process. Loose layers in four to six-inch lifts will permit the backfill material to be worked into the haunch zone.

Material should be manually placed in the haunches. Techniques such as rodding, knifing, or shovel slicing are efecive to ensure the haunch is iiled. Mechanical tampers, maal hpers, orother means that Midas and specified compaction levels must be used carefuly. from lifting off grade. Do not permit compaction equipment to contact the pipe.
Pipe embedment is constructed by placing select materials equally on each side of the pipe in loose layers of 6 to 12 inches. Each layer is then compacted before adding the next lift. Lift construction progressing equally along each side of the pipe is necessary for pipe support. For convenience, the differetion may aternate from side to side such heat is generally concluded when select fill is extended to the minimum cover height.

Bedding and Embedment Materials

 Bedding and structural backfill is commonly a well-graded granular material free of organics, rock fragments larger than three inches, chunks of highy plastic clay, frozen lums, and mixtures are ideal.Poorly graded clean crushed rock with 100% passing the $11 / 2$-in sieve provides excellent pipe support and is ideal when compactive forces need to be lessened to the extent possible for highly flexible conduits.
Processed aggregates with angular interlocking particles provide the best support with a minimum of compaction effort over a wide range of moisture content and lift depth. Uniformgraded materials are typically angular rock fragments with a nominal size distribution from $3 / 4$ to $11 / 2$-in.

INSTALLATION GUIDE

Trench Installation

Pipe installations in cut trenches can begin once the bedding has been properly constructed over a suitable foundation. Trench sidewalls must be stable, supported, or laid back according to OSHA regulations. Narrower trench widths normal provide better pipe support if the native soils forming the trench haunching side fill compaction and safe working condition.

Pipe should be placed on bedding shaped to the pipe invert for a width of one-half the diameter or span where the distance between the pipe and trench wall is less than 2-ft.

Trench Width. As a guide, AASHTO indicates the minimum trench width should not be less than the greater of the pipe diameter plus 16 inches or the pipe diameter times 1.5 plus 12 inches.

Structural Backfill. Select materials are specified for use in the structural backfill or embedment zone, consisting of a bedding layer beneath the pipe, the critical haunch zones beneath the pipe sides and the bedding layer, the side zones, and a distan

Minimum Bedding Thickness. Loosely placed to a depth of least two-times the corrugation depth.
Minimum Cover. A distance above the pipe equivalent to the Mreater of one-eighth the pipe span or 12 inches

Trench Box Installation

The use of a trench box for the deeper installations typically challenges the ability to maintain side fill support as the trench box is advanced.

Voids left by the trench box walls, as well as the void left between the trench box and the excavation must be addressed to ensure compacted support extends to the undisturbed native materials. Any sloughed material against the outside of the trench box must also be addressed.

Trench width requirements correspond to the distance between the interior walls of the trench box and therefore the excavation width will increase accordingly.

Do not compact embedment material against the walls of the trench box so as not to disturb the installed pipe and its embedment when moving the trench box
Proper placement and compaction of the side fill is done below the bottom edge of the trench box as it is raised vertically in approximate 12 inch increments, removing any sloughed material as the process continues.
The practice of using a sub-trench will mitigate the challenges associated with haunch and side fill placement and compaction
Where sub-trenches are not allowed the trench box should be Where sub-trenches are not allowed
widened to mitigate the challenges.
Using manufactured aggregates that require little compactive \square effort will produce the best results for trench box installations.

Embankment Installation

Embankments may be constructed in lifts with the pipe in place or constructed to a height corresponding to the pipe any case a minimum width of structural envelope is needed for lateral restraint.

As a guide, AASHTO indicates the minimum width of structura envelope on each side of the pipe should not be less than one span for diameters (or spans) less than 24 inches, 2 - ft for spans between 24 and 144 inches, and 5 -ft for spans exceeding 144 inches.

Also, the combined width of the structural envelope and the embankment beyond the envelope must be adequate to suppor all the loads on the pipe. A good practice is to provide a total

Lift Construction Above The Pipe

For lift construction to the minimum cover height only walkbehind compaction equipment shall be used. Once minimum back and forth with no twisting/turning. Tracked excavators and smooth drum vibratory soil compactors may be used once 24 inches have been established above the pipe.

Multiple Pipe Runs

Installation methods for multiple runs of pipe shall be consistent with trench and embankment installations with the added condition that backfilling progress evenly across all pipe runs. Spacing between pipes shall be sufficient to permit the proper placement and compaction of structural backill in the haunch
and between the structures. As a guide, AASHTO indicates the minimum spacing between pipes should not be less than that shown in the tables below:

PIPE DIAMETER	MINIMUM SPACING
Up to 24 in.	12 in.
$24-72$ in.	$1 / 2 \mathrm{D}$
Greater than 72 in.	36 in.
PIPE-ARCH SPAN	MINIMUM SPACING
Up to 36 in.	12 in.
$36-108$ in.	$\mathrm{S} / 3$
Greater than 108 in.	36 in.

Temporary Construction Cover
As an added measure of protection during the construction orocess additional (temporary) compacted cover may be otential for rutting associated with large tread rubic and fires. The following table provides industry guidelines based on axle weights:

MINIMUM TEMPORARY COVER FOR CONSTRUCTION LOADS (FT)				
Span	Axle Loads (KIPS)			
(in.)	18-50	50-75	75-110	110-150
12 to 42	2.0	2.5	3.0	3.0
48 to 72	3.0	3.0	3.5	4.0
78 to 120	3.0	3.5	4.0	4.0
126 to 144	3.5	4.0	4.5	4.5

Designations for Bedding and Backfil

Soils meeting the requirements of Soil Groups GW, GP, GM, GC, and SP as defined in ASTM D2487 are generally acceptab acceptable but will require closer control to obtain the specifie density. AASHTO M145 groups A-1, A-2 or A-3 are minimum ASHTO requirements. Commonly used AASHTO designations for crushed rock are AASHTO Nos. 57, 67 and 8.

ASTM D2487	AASHTO M145	DESCRIPTION
GW GP SP	A-1-a	Well-graded gravel
GM SM SP	A-1-b	Gravelly sand
GM SM ML SP GP	A-2-4	$\begin{array}{l}\text { Sand and gravel } \\ \text { with low plasticity silt }\end{array}$
SC GC GM	A-2-5	$\begin{array}{l}\text { Sand and gravels } \\ \text { with elastic sits }\end{array}$
SC GC	A-2-6	$\begin{array}{l}\text { Sands with clay fines } \\ \hline \text { SC GC }\end{array}$ A-2-7

Clay yines\end{array}\right]\)| Fine sands, such as |
| :--- |
| beach sand |

The above table shows a descending order of backfill quality where non-plastic sands and gravels are preferred, especially or the larger, more flexible pipe, higher fills, and trench box istallations. Compaction to 90% SPD is generally sufficient for al cases.

Filter Fabric

The migration of fines into the pipe embedment can result in oss of pipe support. The gradation and relative size of the oss of pipe support. The gradation and relative size of the minimize this migration. When coarse and open-graded material s placed adjacent to a finer material a filter fabric (or other acceptable means) should be used.

Corrugated Steel Pipe (CSP) has been in use since the early 20n century, much of this time available with only a galvanized
coating. With the addition of several coating options CSP has increased its value and usefulness in providing extended servic

Environmental conditions can vary considerably from site to site but there are only several variables used to predict service life. The pipe interior (water-side durability) is impacted by effluent abrasion, pH and resistivity, and is typically the controlling factor
in service life assignments. The pipe exterior (soil-side durability) is affected by soil pH and resistivity, and is generally not the limiting factor in estimating CSP service life.
Abrasion is a function of the bed load carried by the effluent and its velocity. Abrasion levels are correlated to the classification system developed by the Federal Highway Administration (FHWA)

FHWA ABRASION		BED LOAD	VELOCITY
Level 1	None	None	
Level 2	Low	Sand/gravel	$<5 \mathrm{fps}$
Level 3	Moderate	Sand/gravel	$5-15 \mathrm{fps}$
Level 4	Severe	Heavy gravel/rock	$>15 \mathrm{fps}$

The $\mathbf{~ p H}$ ranges between 0 and 14 and is a measurement of cm] is a measure of how strongly a material opposes the flow of electric current. A low resistivity indicates a material that readily allows the movement of electric charge and results in greater
corrosion rates.

Normal environmental conditions have a pH range between
5.8 and 8.0 with a resistivity greater than 2000 ohm- cm . Mildly 5.8 and 8.0 with a resistivity greater than 2000 ohm-cm. Mildly corrosive environments have a pH range from 5.0 to 5.8 and
a resistivity between 1500 and 2000 ohm-cm. Corrosive environments are characterized by pH's less than 5.0 and resistivities below 1500 ohm-cm.
Galvanized CSP provides a zinc coating weight of two ounces per square foot of surface area. Galvanized CSP has been in us longer than any other material and much has been learned about the service life of this material. A field investigation conducted
in the 1960 's evaluated the service life of roughly 7,000 culverts in the 1960's evaluated the service life of roughly 7,000 culv
in terms of pH and resistivity alone, and was subsequently quantified in the following service life equations
For $\mathrm{pH} \leq 7.3$
For $\mathrm{pH} \leq 7.3$
Service L Life (Years $)=35.85\left[\log _{10} \mathrm{R}-\log _{10}\left(2160-2490 \log _{10} \mathrm{pH}\right)\right]$ For $\mathrm{pH}>7.3$

The equations relate the service life for 16 gauge CSP based on a 25% loss of steel in the pipe invert. Longer service life may be achieved with the heavier gauges. For gauges $14,12,10$ and 8
apply factors $1.3,1.8,2.3$ and 2.8 , respectively.
For pH 's ≤ 7.3 the equation should be applied to both the water controlling factor.
An important factor later discovered to have a significant impac on the service life of galvanized coated CSP is the presence of
soft water (CaCO3 < 50 ppm). Hard water has an excess of this soft water ((caCO3 < 50 ppm). Hard water has an excess of this
dissolved salt which is deposited on the pipe in the form of a scale that protects the underlying coating. Had the impact of soft
water been recognized at the time of installation the resultant water been recognized at he time of installation the resultant equations would have predicted significantly longer service life
for galvanized CSP installed within the environmental guidelines
of today. Aluminized CSP will not be adversely affected by the presence of soft water and therefore is the recommended lun Aluminized CSP, also referred to as Aluminized Type 2 (ALT2), has a pure aluminum coating of one ounce per
square foot of surface area. The aluminum coating develops a passive aluminum oxide film that withstands a wider range of environmental conditions. The film is quite stable alkaline environments until the pH exceeds 9.0 , and develops regardless of the CaCO_{3} concentration. ALT2 therefore has the advantage over galvanized CSP in the lower pH and soft wate environments.

Polymer Coated CSP is the premier CSP coating, manufactured from galvanized steel coils that have been laminate has strong adhesion characteristics with the galvanized sheet and is the most durable CSP coating available today, outperforming the other coatings in both the more abrasive and chemically aggressive environments. Installations now dating
back nearly 50 years show no signs of degradation

Service Life Assignments - CSP Coatings

 There have been some major research undertakings over the past couple decades to supplement the vast field surveysand findings. Laboratory testing conducted by the priman and findings. Laboratory testing conducted by the primary
coating suppliers along with ongoing field monitoring and other research endeavors combine to provide the following service life assignments for CSP coatings:

$\begin{array}{c}\text { SERVICE } \\ \text { LIFE }\end{array}$	ENVIRONMENT	ABRASION	$\begin{array}{c}\text { CSP } \\ \text { COATING }\end{array}$
$\begin{array}{c}\text { Minimum }\end{array}$			
100 years			

\mathrm{R}>1500\end{array}\right)\)

Consult the NCSPA Service Life Selection Guide for a fulle
treatment of service life for CSP coatings (www.ncspa.org)

Service Life Assignments

 Corrugated Aluminum Alloy Pipe Minimum 75-Year ServiceThe core material for aluminum alloy pipe is specially formulated The core material for aluminum alloy pipe is specially formulated
to resist the effects of corrosion and abrasion. Corrosion to resist the effects of corrosion ay cladding each surface of the core with a higher grade aluminum alloy that totals 10% of the
total sheet thickness. Corrugated aluminum alloy pipe provides total sheet thickness. Corrugated aluminum alloy pipe provides a minimum $75-\mathrm{yr}$ service life in the recommended environmen
$(\mathrm{pH} 4-9, \mathrm{R}>500$ ohm-cm). Aluminum drainage products are (pHecially appropriate for brackish and seawater (35 ohm ohm) environments when the pipe is backfilled with a clean, free
draining granular material.

For an exhaustive treatment of service life for all highway culvert types see NCHRP SYNTHESIS 474, Service Life of Culverts,

Spiral Rib Steel Pipe (SRP) AISI ASD (H2O and H25 Live Load)

Dia.	Min	Maximum Cover			
(in)	Cover	16 ga	14ga	12ga	10ga
15	1.00	130	182		
18	1.00	108	151	252	
21	1.00	93	130	216	
24	1.00	81	113	189	
30	1.00	65	91	151	
36	1.00	54	75	126	
42	1.00	46	65	108	
48	1.00	40	56	94	
54	1.13	(36)	50	84	
60	1.25	(32)	45	75	109
66	1.38	(29)	$141)$	68	99
72	1.50		(37)	62	88
78	1.63		(34)	55	78
84	1.75			(48)	68
90	1.88			(43)	60
96	2.00			$38)$	53
102	2.13			(33)	(46)

Corrugated Steel Pipe (CSP) AISI ASD (H20 and H25 Live Load)
Minimum and Maximum Cover Depths (ft)

Dia.	Min	Maximum Cover				
(in)	Cover	16ga	14ga	12ga	10ga	$89 a$
48	1.00	71	88	124	160	196
54	1.00	63	79	110	142	174
60	1.00	56	71	99	128	157
66	1.00	51	64	90	116	142
72	1.00	47	59	83	107	130
78	1.00	43	54	76	98	120
84	1.00	40	50	71	91	112
90	1.00	37	47	66	85	104
96	1.00	35	44	62	80	98
102	1.06	33	41	58	75	92
108	1.13	(30)	38	53	69	85
114	1.19	(28)	35	49	64	78
120	1.25	(25)	(32)	45	59	72
126	1.31		(29)	42	54	66
132	1.38		(27)	38	50	61
138	1.44		(25)	35	46	56
144	1.50			(32)	42	52

Corrugated Steel Pipe (CSP) AISI ASD (H20 and H25 Live Load)
Minimum and Maximum Cover Depths (ft)

Dia.	Min	Maximum Cover				
(in)	Cover	16ga	14ga	12ga	10ga	8ga
48	1.00	63	79	111	142	174
54	1.00	56	70	98	127	155
60	1.00	50	63	88	114	139
66	1.00	46	57	80	103	127
72	1.00	42	52	74	95	16
78	1.00	39	48	68	87	107
84	1.00	36	45	63	81	99
90	1.00	33	42	59	76	93
96	1.00	31	39	55	71	87
102	1.06	29	37	52	67	82
108	1.13	(28)	35	49	63	77
14	1.19	(26)	32	45	58	72
120	1.25	(24)	30	42	54	66
126	1.31	(22)	(27)	39	50	61
132	1.38		(25)	36	46	57
138	1.44		(23)	33	43	53
144	1.50			(30)	39	49

NOTES:
. Tables are based on the methods set forth by the American Iron and Steel Institute (AIS) and is an Allowable Stress Design (ASD). 2. Minimum cover is governed by general equations in all cases (span/ $8 \geq 12$ in, except for spiral rib pipe where span/4 ≥ 12 in). . Minimum cover is measured from the top of pipe to the bottom of flexible pavement or the top of rigid pavement
Cover depths shown are based on installations in accordance with ASTM A798
5. Corrugated steel pipe manufacturing standards are per ASTM A760 for metallic coatings or ASTM A762 for polymer coatings, 6. Fill heights in parentheses require higher instalation standards due to the higher flexibility of the span-gauge combination. This may be Aluminized and polymer coated steel is available in gauges 16 through 10 . Consult manufacturer before specifying polymer coated steel 7. Aluminized and polym
in gauges 12 and 10 .

Corrugated Steel Pipe (CSP)AASHTO LRFD (HL-93 Live Load) Minimum and Maximum Cover Depths (ft)\quadCSP $22 / 3 \mathrm{x} 1 / 2 \mathrm{in}$												
Dia.	Min	Maximum Cover					Dia.	Min	Maximum Cover			
(in)	Cover	16ga	14ga	12ga	10ga	8ga	(in)	Cover	16ga	14ga	12ga	10ga
12	1.00	218	273				15	1.00	114	160		
15	1.00	174	218				18	1.00	95	133	222	
18	1.00	145	182				21	1.00	81	114	190	
21	1.00	124	155	218			24	1.00	71	100	166	
24	1.00	109	136	191			30	1.00	57	80	133	
30	1.00	87	109	152	196		36	1.00	47	66	111	
36	1.00	72	90	127	163		42	1.00	40	57	95	
42	1.00	62	77	109	140	171	48	1.00	35	50	83	
48	1.00	54	68	95	122	150	54	1.13	(31)	44	74	
54	1.00		60	84	109	133	60	1.25		39	66	96
60	1.00			76	98	120	66	1.38		(36)	60	88
66	1.00				89	109	72	1.50			55	80
72	1.00				81	100	78	1.63			51	74
78	1.00					88	84	1.75			(47)	69
84	1.00					76	90	1.88				64
96 2.00 (59) 102 2.13 (53)												

Corrugated Steel Pipe (CSP)
AASHTO LRED (HL-9 (ive Load)
Minimum and Maximum Cover Depths (ft)

Dia.	Min	Maximum Cover 3×1 in				
(in)	Cover	16ga	14ga	12ga	10ga	8ga
48	1.00	62	78	109	141	173
54	1.00	55	69	97	125	154
60	1.00	50	62	87	113	138
66	1.00	45	56	79	102	126
72	1.00	41	52	73	94	15
78	1.00	38	48	67	87	106
84	1.00	35	44	62	80	99
90	1.00	33	41	58	75	92
96	1.00		39	54	70	86
102	1.06		36	51	66	81
108	1.13			48	62	76
114	1.19			46	59	72
120	1.25			43	56	69
126	1.31				53	65
132	1.38				51	62
138	1.44				49	60
144	1.50					57

Corrugated Steel Pipe (CSP) AASHTO LRFD (HL-93 Live Load) Minimum and Maximum Cover Depths (ft)					$\begin{gathered} \text { csp } \\ 5 \times 1 \text { in } \end{gathered}$	
Dia.	Min	Maximum Cover				
(in)	Cover	16ga	14ga	12ga	10ga	8ga
48	1.00	55	69	97	126	154
54	1.00	49	62	87	112	136
60	1.00	44	55	78	100	123
66	1.00	40	50	71	91	112
72	1.00	37	46	65	84	102
78	1.00	34	42	60	77	94
84	1.00	31	39	55	71	88
90	1.00	29	37	52	67	82
96	1.00		34	48	62	77
102	1.06		32	45	59	72
108	1.13			43	55	68
114	1.19			41	52	64
120	1.25			39	50	61
126	1.31				47	58
132	1.38				45	55
138	1.44				43	53
144	1.50					51

NOTES:

1. Tables are based on the methods set forth in Section 12 of the AASHTO LRFD Bridge Design Specifications.
2. Minimum cover is govermed by general equations in all cases (span/ $8 \geq 12$ in, except for spiral rib pipe where span/4 ≥ 12 in). 3. Minimum cover is measured from the top of pipe to the bottom of flexible pavement or the top of rigid pavement.
3. Cover depths shown are based on installations in accordance with Section 26 of the AASHTO LRFD Bridge Construction Specifications.
4. Corugated steel pipe manufacturing standards are per AASHTO M36 for metallic coatings or AASHTO M245 for polymer coatings.
5. Spiral rib pipe fill heieghts in parentheses reauire higher installation standards due to the higher flexibility of the span-gauge combination.
6. Aluminized and polymer coated steel is available in gauges 16 through 10 . Consult manufacturer before specifying polymer coated stee
in gauges 12 and 10 .

Spiral Rib Aluminum Alloy Pipe (SRAAP) AASHTO LRFD (HL-93 Live Load) Minimum and Maximum Cover Depths (ft)					$\begin{gathered} \text { SRAAP } \\ 3 / 4 \times 3 / 4 \times 7^{1 / 2} \text { in } \end{gathered}$
Dia.	Min		Maxin	Cover	
(in)	Cover	16ga	14ga	12ga	10ga
15	1.00	56	77		
18	1.00	47	64		
21	1.00	40	55		
24	1.00	35	48	78	
30	1.25	28	38	62	
36	1.50	(23)	32	51	
42	1.75		(27)	44	
48	2.00			38	55
54	2.00			34	48
60	2.00			(30)	43
66	2.00				39
72	2.18				(36)

 Corrugated Aluminum Alloy Pipe (CAAP)
AASHTO LLFD (HL-93 Live Load)
Minimum and Maximum Cover Depths (tt)

| Minimum and Maximum Cover Depths (ft)
 Dia. Min Maximum Cover | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | CAAP |
| :--- | :--- |
| $3 \times 1 \mathrm{in}$ |

	Dia.	Min	Maximum Cover					
(in)	Cover	16ga	14ga	12ga	10ga	8ga		
30	1.00	60	76					
36	1.00	50	63	88				
42	1.00	43	54	76				
48	1.00	37	47	66	89	105		
54	1.00	33	42	59	79	93		
60	1.00	30	38	53	71	83		
66	1.00	27	34	48	64	76		
72	1.00	24	31	44	59	69		
78	1.00		29	40	54	64		
84	1.00			37	50	59		
90	1.00			35	47	55		
96	1.00			33	44	52		
102	1.06				41	49		
108	1.13				39	46		
114	1.19					42		
120	1.25					38		

NOTES:

1. Tables are based on the methods set forth in Section 12 of the AASHTO LRFD Bridge Design Speeifications.
2. Minimum cover is goverred by general equations in all cases (span/ $8 \geq 12$ in, exceet for spiral rib pipe where span/ $2 \geq 12$ in for
3. Minimum cover is measured from the top of pipe to the bottom of flexible pavement or the top of rigid pavement.
4. Cover depths shown are based on installations in accordance with Section 26 of the AASHTO LRFD Bridge Construction Specifications.
5. Corrugated aluminum pipe manufacturing standards are per AASHTO M196.
6. Spiral rib pipe fill heights in parentheses require higher installation standards due to the higher flexibility of the span-gauge combination. This may be
accommodated using trench construction methods with crushed rock backfill materials.

Spiral Rib Steel Pipe-Arch
Aisis AsD
AISI ASD (H20 and H25 Live Loads)
Minimum and Maximum Cin
Minimum and Maximum Cover Depths

Eqquivalent Diameter (in)	Design Span \times Rise (in)	Minimum Steel Gauge	Minimum Cover (tt)	Maximum Cover (tt)
18	20×16	16	1.0	19
21	23×19	16	1.0	18
24	27×21	16	1.0	16
30	33×26	14	1.0	16
36	40×31	14	1.0	16
42	46×36	12	1.0	16
48	53×41	12	1.1	16
54	60×46	12	1.3	25
60	66×51	12	1.4	24
66	73×55	12	1.5	24
72	81×59	10	1.7	20
78	87×63	10	1.8	20
84	95×67	10	2.0	20

Corrugated Steel Pipe-Arch
Alsugated Steel Pipe-Arch (H20 and H25 Live Loads)

Equivalen Diameter (in)	Nominal Span \times Rise (in)	Design Span x Rise (in)	$\begin{gathered} \hline 3 \times 1 \text { in } \\ \text { Min Gauge } \\ \text { Steel } \end{gathered}$	$\begin{gathered} 5 \times 1 \text { in } \\ \text { Min Gauge } \\ \text { Steel } \end{gathered}$	Minimum Cover (ft)	Maximum Cover (ft)
48	53×41	53×41	14	12	1.0	14
54	60×46	$581 / 2 \times 481 / 2$	14	12	1.0	25
60	66×51	65×54	14	12	1.0	24
66	73×55	721/2 $5881 / 4$	14	12	1.0	24
72	81×59	$79 \times 62 / 2$	14	12	1.0	20
78	87×63	861/2 $\times 67 / 1 / 4$	14	12	1.0	20
84	95×67	931/2 $\times 711 / 4$	14	12	1.0	20
90	103×71	$1011 / 2 \times 76$	14	12	1.1	20
96	112×75	1081/2 $\times 801 / 2$	14	12	1.1	19
102	117×79	$1161 / 2 \times 84^{3 / 4}$	14	12	1.2	19
108	128×83	$1231 / 2 \times 891 / 4$	12	12	1.3	19
114	137×87	$131 \times 933 / 4$	12	12	1.4	19
120	142×91	$1381 / 2 \times 98$	12	12	1.4	19

Corrugated Steel \& Aluminum Alloy Pipe-Arch AASHTO LRFD (HL-93 Live Load)
Minimum and Maximum Cover Depths

NOTES:

1. Tables are based on the methods set forth by the American Iron
and Steel Institute (AIII) and is an Allowable Stress Design (ASD). 2. Minimum cover is governed by general equations in all cases

2. Minimum cover is measured from the top of pipe to the bottom of
flexible paveremt or the top of rigid pavement.
3. Maximum cover is limited to heights that produce cormer bearing 4. Mressurum of of 4kst or less.
4. Allowable cover depths shown are based on an instalation in
accordance with ASTM A A 98 .
5. Minimum cover shall be applied to the "Design" rise 7. Corrugated steel pipe manufacturing standards are per ASTM
6. Provisions for three larger steel pipe-arches are made in the ASTM standards for the spiral rib corruation but require special design:
103×71 in $(90$-in eq), 112×75 in $(96$-in eq), and 117×79 in (102-in eq)

PIPE-ARCH DESIGN

In similar fashion as round shapes properly embedded, pipearches transfer the overlying pressure to the surrounding backfil and enable the resultant pipe forces to flow freely around
the peribhery to mobilize the full compressive and bucklin the periphery to mobiize the fuil compressive and bucking
strengths of the corrugation profile - a phenomenon more technically known as ring compression theory.
Unlike round shapes, however, pipe-arches generate radial corner pressures greater than the applied pressure at the top adjacent to the small radius corners must therefore provide enough bearing capacity to sustain these pressures.
To better enable the haunch zone to resist these higher pressures it is necessary that the haunch fill be more densely compacted with select backfill materials (Figure 5). The AREMA Manual for Railway Engineering publishes bearing capacity
values for the more select materials (Table 1).

TABLE 1. ALLOWABLE BEARING PRESSURES	
FOR DESIGN (KSF)	
Compacted gravel or sand and gravel	12.0
Loose gravel or compacted coarse sand	8.0

Loose gravel or compacted coarse sand 8.0
6.0

CORNER PRESSURE AT A DISTANCE FROM THE STRUCTURE
 -

A good design approach is to limit the radial pressure at the pipe-arch corner (P_{C}) to a value consistent with the embedmen material and its relative compaction before allowing that pressure to dissipate over a certain distance $\left(D_{1}\right)$ to a value

As shown in Figure 6, the bedding blanket is a relatively thin layer compared to the sidefill width $\left(S_{w}\right)$ making D_{1} the maximum distance over which P_{C} can dissipate.
Based on AASHTO LRFD BDS Eq. 12.8.5.3-1, D is represented by the expression $\left(P_{c} R_{c} / P_{P}\right)-R_{c}$, where $P_{c} R_{c}$ is the total dead and live load thrust (T) in the structure.

(sure 4 . Overlying pressure $\left(P_{V}\right)$ acting over the top radius $\left(R_{T}\right)$ results in

DESIGN NOTES

1. Traditional methods of developing height of cover tables simply limited P_{c} to the allowable bearing pressure of the native or embankment materials, typically taken as 4 ksf , while the above method was reserved for special designs.
2. Since pipe-arch structures are typically used in shallow cover applications, this more precise method finds greater value in designing for minimum cover.
3. Minimum bedding thickness is taken as $2 x$'s the corrugation depth.
4. Sidefill width (S_{w}) may be taken as the minimum spacing between pipes per Table C12.6.7-1 of the AASHTO LRFD BDS, which varies with the span as follows: 12 in for spans up to 36 in, span $/ 3$ for spans between 36 and 108 in, and 36 in for spans larger than 108 in (see also C12.6.6.1 for an alternative derivation).
5. The maximum bedding width $\left(\mathrm{B}_{w}\right)$ is the chord length of the bottom radius arc

Tables apply to both CSP and CAAP. However, CAAP sizes have
a more limited range. See the cover height tables for correlation.

PIPE-ARCH WITH $\mathbf{2}^{2 / 3} \mathrm{X}$ X $1 / 2$ IN CORRUGATIONS							
Equivalent Diameter (in)	Design		$\begin{gathered} \text { Waterway } \\ \text { Area } \\ \left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} B \\ (\mathrm{in}) \end{gathered}$	Rc(in)	Rt(in)	$\begin{aligned} & \mathrm{Rb} \\ & \text { (in) } \end{aligned}$
	Span	Rise (in)					
15	17	13	1.1	41/6	31/2	85/6	25\%
18	21	15	1.6	47\%	41/8	1034	$33^{1 / 8}$
21	24	18	2.2	5\%	47/8	111/6	34%
24	28	20	2.9	61/2	51/2	14	421/4
30	35	24	4.5	81/8	67/8	17\%/	55\%/
36	42	29	6.5	93/4	81/4	$211 / 2$	661/8
42	49	33	8.9	111/6	9\%	25\%	77\%/4
48	57	38	11.6	13	11	28\%	881/4
54	64	43	14.7	14\%	12\%/	$32^{1 / 4}$	991/4
60	71	47	18.1	161/4	1334	3534	1101/4
66	77	52	21.9	17\%/8	15\%/	39\%/8	1211/4
72	83	57	26.0	191/2	161/2	43	1321/4

PIPE-ARCH WITH 3×1 AND 5×1 in Corrugations							
Equivalent Diameter (in)	Nominal Span \times Ris (in)	$\begin{gathered} \hline \text { Design } \\ \text { Span XRise } \\ \text { (in) } \end{gathered}$	Waterway Area (ft²)	$\begin{gathered} \text { B } \\ \text { (in) } \end{gathered}$	$\begin{aligned} & \mathrm{Rc} \\ & \text { (in) } \end{aligned}$	Rt (in)	Rb (in)
48	53×41	53×41	11.7	151/4	10\% ${ }^{\text {a }}$	281/60	737/6
54	60×46	$581 / 2 \times 481 / 2$	15.6	201/2	1834	29\%/8	$51^{11 / 8}$
60	66×51	65×54	19.3	2234	2034	32%	561/4
66	73×55	721/2 $\times 58 / 4$	23.2	251/8	227/8	363/4	633/4
72	81×59	$79 \times 621 / 2$	27.4	2334	20\%	399/2	82\%/6
78	87×63	$861 / 2 \times 67 / 4$	32.1	253/4	22\%	$43^{33 / 8}$	921/4
84	95×67	931/2 $\times 711 / 4$	37.0	2794	24\%/	47	1001/4
90	103×71	$1011 / 2 \times 76$	42.4	2934	261/8	511/4	111\%
96	112×75	$1081 / 2 \times 801 / 2$	48.0	31\%	273/4	547\%	1201/4
102	117×79	$1161 / 2 \times 84^{3 / 4}$	54.2	33\%	291/2	59\%	1313/4
108	128×83	$1231 / 2 \times 891 / 4$	60.5	35\%	$311 / 4$	631/4	1393/4
114	137×87	$131 \times 933 / 4$	67.4	37\%	33	67\%	1491/2
120	142×91	$1381 / 2 \times 98$	74.5	391/2	$34^{3 / 4}$	71\%	$162^{3 / 8}$

SPIRAL RIB PIPE-ARCH WITH $3 / 4 \times 3 / 4 \times 71 / 2$ IN CORRUGATIONS

Equivalent Diameter (in)	Design		$\begin{gathered} \text { Waterway } \\ \text { Area } \\ \left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \text { (in) } \end{gathered}$	$\begin{aligned} & \mathrm{Rc} \\ & \text { (in) } \end{aligned}$	$\begin{gathered} \text { Rt } \\ \text { (in) } \end{gathered}$	$\begin{gathered} \mathrm{inb} \\ \text { (in) } \end{gathered}$
	Span (in)	$\begin{gathered} \text { Rise } \\ \text { (in) } \end{gathered}$					
18	20	16	1.7	$51 / 8$	5	101/4	27/2
21	23	19	2.3	$57 / 8$	5\%	111\%	$34^{1 / 4}$
24	27	21	3.0	$63 / 4$	53/4	131/2	40\%
30	33	26	4.7	8384	71/8	16\%	$511 / 8$
36	40	31	6.7	10\%\%	83/6	201/4	621/2
42	46	36	9.2	12\%/9	934	231/4	73
48	53	41	12.1	14	111/8	26\%	$831 / 2$
54	60	46	15.6	201/2	183/4	29\%	$511 / 8$
60	66	51	19.3	${ }^{23}{ }^{3 / 4}$	2034	$32^{\frac{2}{6}}$	$561 / 4$
66	73	55	23.2	251/8	22\%/	3634	633/4
72	81	59	27.4	2334/	20\%	391/2	82\%
78	87	63	32.1	253/4	22\%	43%	921/4
84	95	67	37.0	273/4	243/8	47	1001/4
90	103	71	42.4	293/4	261/8	511/4	111\%
96	112	75	48.0	$31^{1 \%}$	$22^{37 / 4}$	54\%	1201/4
102	117	79	54.2	33\%	291/2	59\%/	$133^{13 / 4}$

ROUND PIPE							
Dia. (in)	$\underset{\left(t^{2}\right)}{\substack{ \\\hline}}$	$\begin{aligned} & \hline \mathrm{R} \\ & (\mathrm{f}) \end{aligned}$	$11 / 2 x^{1 / 4}$ in	$27 / 3 \times 1 / 2$ in	Manning's, n	5×1 in	$3 / 4 \times 3 / 4 \times 7 / 2$ in
8	${ }^{0.35}$	0.167	0.012				
10	0.55	0.208	0.014				
12	0.79	0.250		0.011			
15	1.23	0.313		0.012			0.012
18	1.77	0.375		0.013			0.012
21	2.41	0.438		0.014			0.012
24	3.14	0.500		0.015			0.012
30	4.91	0.625		0.017			0.012
36	7.07	0.750		0.018	0.022		0.012
42	9.62	0.875		0.019	0.022		0.012
48	12.57	1.000		0.020	0.023	0.022	0.012
54	15.90	1.125		0.021	0.023	0.022	0.012
60	19.63	1.250		0.021	0.024	0.023	0.012
66	23.76	1.375		0.021	0.025	0.024	0.012
72	28.27	1.500		0.021	0.026	0.024	0.012
78	33.18	1.625		0.021	0.027	0.025	0.012
84	38.48	1.750		0.021	0.027	0.025	0.012
90	44.18	1.875			0.027	0.025	0.012
96	50.27	2.000			0.027	0.025	0.012
102	56.75	2.125			0.027	0.025	0.012
108	63.62	2.250			0.027	0.025	
114	70.88	2.375			0.027	0.025	
120	78.54	2.500			0.027	0.025	
126	86.59	2.625			0.027	0.025	
132	95.03	2.750			0.027	0.025	
138	103.87	2.875			0.027	0.025	
144	113.10	3.000			0.027	0.025	

Manning's Equation, $\mathrm{Q}(\mathrm{cfs})=1.486\left(\mathrm{AR}^{2 / 3} \mathrm{~S}^{1 / 2}\right) / \mathrm{n}$

A = Cross-Sectional Area (Ht^{2})
R = Hydraulic Radius (ft)
A and R values for full flow conditions

[^0]Cross- Sectional Areas at Equal Depths
of Flow in Round and Pipe-Arch Shapes
$\mathrm{n}=$ Manning's Roughness Coefficient $\mathrm{S}=$ Slope ($\mathrm{ft} / \mathrm{ft}$)

See any of the general industry references on page 5 for references on page 5 for further hydraulic information, including Manning's roughness
coefficients, partial flow coefficients, partial flow nomographs, etc.

Note: The pipe-arch handles alarger
volume at the lower levels of flow.

PIPE-ARCH				
Rise x Span (in)	$\underset{\left(t^{2}\right)}{A}$	$\begin{aligned} & \mathbf{R} \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Manning's n } \\ & 2^{2 / 3} \times 1 / 2 \text { in } \end{aligned}$	
17×13	1.1	0.280	0.013	
21×15	1.6	0.340	0.014	
24×18	2.2	0.400	0.015	
28×20	2.9	0.462	0.016	
35×24	4.5	0.573	0.018	
42×29	6.5	0.690	0.019	
49×33	8.9	0.810	0.020	
57×38	11.6	0.924	0.021	
64×43	14.7	1.040	0.022	
71×47	18.1	1.153	0.022	
77×52	21.9	1.268	0.022	
83×57	26.0	1.380	0.022	
PIPE-ARCH				
Rise x Span	$\underset{\left(t t^{2}\right)}{ }$	R	Manning's n	
53×41	11.7	0.931	0.024	0.023
60×46	15.6	1.104	0.024	0.023
66×51	19.3	1.230	0.025	0.024
73×55	23.2	1.343	0.026	0.025
81×59	27.4	1.454	0.027	0.025
87×63	32.1	1.573	0.028	0.026
95×67	37.0	1.683	0.028	0.026
103×71	42.4	1.800	0.028	0.026
112×75	48.0	1.911	0.028	0.026
117×79	54.2	2.031	0.028	0.026
128×83	60.5	2.141	0.028	0.026
137×87	67.4	2.259	0.028	0.026
142×91	74.5	2.373	0.028	0.026

PIPE-ARCH			
Rise x Span (in)	$\underset{\left(t^{2}\right)}{A}$	$\begin{aligned} & \mathrm{R} \\ & (\mathrm{t}) \end{aligned}$	Manning's \mathbf{n} $3 / 4 \times 3 / 4 \times 71 / 2$ in
20×16	1.7	0.361	0.012
23×19	2.3	0.418	0.012
27×21	3.0	0.477	0.012
33×26	4.7	0.598	0.012
40×31	6.7	0.711	0.012
46×36	9.2	0.837	0.012
53×41	12.1	0.963	0.012
60×46	15.6	1.103	0.012
66×51	19.3	1.229	0.012
73×55	23.2	1.343	0.012
81×59	27.4	1.454	0.012
87×63	32.1	1.572	0.012
95×67	37.0	1.882	0.0
103×71	42.4	1.800	0.012
112×75	48.0	1.910	0.012
117×79	54.2	2.030	0.012

End treatments vary considerably depending on the fill slope
to be retained. For the higher embankments where a culvert
cannot be extended into the more gradual slopes a headwall
cannot be extended into the more gradual slopes a headwall
may be required. Where the slope permits the use of more subtle
treatments rip-rap armoring details may be employed. In any event
the inlet and outlet should have a toe wall of sufficient depth to prevent
flows from scouring or undermining the culvert ends.
Metal flared end sections provide an economical solution with hydraulic
efficiencies when a full headwall is not necessary. The ends are beveled and
flared and include a toe plate to eliminate the construction of a concrete toe wall
Flared end sections are made from either galvanized steel, aluminized steel, or aluminum alloy for both round and pipe-arch shapes. The end sections are easily joined to the culvert ends using standard connecting hardware to form a continuous, convenient onepiece structure. The integrated toe plate is punched to accept an optional 8 -in toe plate extension.

SLOPE

The beveled profile blends into the embankment and provides soil retention characteristics. The slope of the embankment does not need to match that of the end section, as the fill can be gradualy transitioned to meet the top edge of the end section. As shown on the following page, the slope varies from 2.5:1 to 1.5:1

As mentioned above, the integrated toe plate with standard depth H (see detail on the following page) is punched to accept an optional 8 -in toe plate extension.

FLARE

The width and flare of the end section creates the funneled shape that minimizes hydraulic losses. The entrance loss coefficient for an end section conforming to fil The table on the following page list

STEP-BEVELED END

As an alternate to the flared end section the manufacturer can miter the pipe ends to form a beveled profile. A two-step bevel is typically fabricated to retain stiffnes at the crown and added stiffness at the invert. Alternatively, the end may be a full bevel or a one-step bevel (top or bottom). The bevel slope is consistent with that used is usually secured by casting a concrete collar around the entire the beveled

END SECTION PROPERTIES FOR ROUND PIPE								
$\begin{aligned} & \text { Dia. } \\ & \text { (in) } \end{aligned}$	Gauge	$\begin{gathered} \text { Weight } \\ \text { (lbs) } \end{gathered}$	$\begin{gathered} \text { A } \\ \text { (in) } \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \text { (in) } \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { (in) } \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{n}) \end{aligned}$	$\underset{(\text { (in) }}{w}$	$\underset{\mathrm{slope}}{\mathrm{s}: 1}$
12	16	27	6	6	6	21	24	2.50
15	16	37	7	8	6	26	30	2.50
18	16	49	8	10	6	31	36	2.50
21	16	55	9	12	6	36	42	2.50
24	16	74	10	13	6	41	48	2.50
30	16	128	12	16	8	51	60	50
36	16	184	14	19	9	60	72	2.50
42	14	320	16	22	11	69	84	2.5
48	14	375	18	27	12	78	90	2.25
54	12	440	18	30	12	84	102	2.25
60	12/10	610	18	33	12	87	114	2.00
66	12/10	697	18	36	12	87	120	2.00
72	12/10	720	18	39	12	87	126	2.00
78	12/10	810	18	42	12	87	132	1.50
84	12/10	850	18	45	12	87	138	1.50
90	12/10	910	24	37	12	87	144	1.5
96	12	985		35	12	87		

notes for all end sections

1. All dimensions are nominal.
in gavanized steel, aluminized steel
2. Reinforced edges are supplemented with stiffener angles for 60 -in
diameter and larger round pipe end sections.
3. Reinforced edges and center panel seams are supplemented wit stifiener angles for 77×52 in and larger pipe-arch end sections 5. Stiffener and reinforcement
material as the end section.
4. Some larger sizes may require field assembly 7. Alt tree-piece bodies .

END SECTION PROPERTIES FOR PIPE-ARC									
Span x Rise (in)	Equiv. Dia. (in)	Gauge	$\begin{gathered} \hline \text { Weight } \\ \text { (liss) } \end{gathered}$	$\begin{gathered} A \\ (\text { in }) \end{gathered}$	$\begin{aligned} & \hline \mathbf{B} \\ & \text { (in) } \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \text { (in) } \end{gathered}$	$\begin{aligned} & \hline \mathrm{L} \\ & \text { (in) } \end{aligned}$	$\underset{(\mathrm{in})}{\mathbf{w}}$	$\begin{gathered} \text { Slope } \\ \mathrm{s}: 1 \end{gathered}$
${ }^{17 \times 13}$	15	16	28	7	9	6	19	30	2.5
21×15	18	16	36	7	10	6	23	36	2.50
24×18	21	16	43	8	12	6	28	42	2.50
28×20	24	16	55	9	14	6	32	48	2.50
35×24	30	14	95	10	16	8	39	60	2.50
42×29	36	14	140	12	18	9	46	75	2.50
49×33	42	12	233	13	21	9	53	85	2.50
57×38	48	12	315	18	26	12	63	90	2.50
53×41	48	12	330	18	25	12	63	90	2.50
64×43	54	12	357	18	30	12	70	102	2.00
60×46	54	12	375	18	34	12	70	102	2.00
71×47	60	12/10	480	18	33	12	77	114	1.50
66×51	60	12/10	487	18	33	12	77	116	1.50
77x52	66	12/10	616	18	36	12	77	12	1.50
73×55	66	10	625	18	36	12	77	126	1.50
83×57	72	12/10	670	18	39	12	77	138	1.50
81×59	72	12/10	680	18	39	12	77	138	1.50
${ }^{87 \times 63}$	78	12/10	729	22	38	12	77	148	1.50
95×67	84	12/10	755	22	34	12	77	162	1.50
103x71	90	12/10	810	22	38	12	77	174	1.50
112x75	96	12/10	907	24	40	12	77	174	1.50

 3. Mutiple panal bodie

$$
\begin{aligned}
& \text { 9. Optional toe plate } \\
& \text { as the end section }
\end{aligned}
$$

Corrugated Aluminum Alloy Pipe Corrugated Aluminum Alloy Pipe
Approximate Handling Weights by Gauge (lbs/tt)

[^0]: Figure 7. Comparison of Waterway

